Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Thorax ; 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2313975

ABSTRACT

INTRODUCTION: Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS: In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS: 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS: Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.

2.
Am J Respir Crit Care Med ; 206(7): 846-856, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-2053497

ABSTRACT

Rationale: Bacterial lung microbiota are correlated with lung inflammation and acute respiratory distress syndrome (ARDS) and altered in severe coronavirus disease (COVID-19). However, the association between lung microbiota (including fungi) and resolution of ARDS in COVID-19 remains unclear. We hypothesized that increased lung bacterial and fungal burdens are related to nonresolving ARDS and mortality in COVID-19. Objectives: To determine the relation between lung microbiota and clinical outcomes of COVID-19-related ARDS. Methods: This observational cohort study enrolled mechanically ventilated patients with COVID-19. All patients had ARDS and underwent bronchoscopy with BAL. Lung microbiota were profiled using 16S rRNA gene sequencing and quantitative PCR targeting the 16S and 18S rRNA genes. Key features of lung microbiota (bacterial and fungal burden, α-diversity, and community composition) served as predictors. Our primary outcome was successful extubation adjudicated 60 days after intubation, analyzed using a competing risk regression model with mortality as competing risk. Measurements and Main Results: BAL samples of 114 unique patients with COVID-19 were analyzed. Patients with increased lung bacterial and fungal burden were less likely to be extubated (subdistribution hazard ratio, 0.64 [95% confidence interval, 0.42-0.97]; P = 0.034 and 0.59 [95% confidence interval, 0.42-0.83]; P = 0.0027 per log10 increase in bacterial and fungal burden, respectively) and had higher mortality (bacterial burden, P = 0.012; fungal burden, P = 0.0498). Lung microbiota composition was associated with successful extubation (P = 0.0045). Proinflammatory cytokines (e.g., tumor necrosis factor-α) were associated with the microbial burdens. Conclusions: Bacterial and fungal lung microbiota are related to nonresolving ARDS in COVID-19 and represent an important contributor to heterogeneity in COVID-19-related ARDS.


Subject(s)
COVID-19 , Microbiota , Respiratory Distress Syndrome , COVID-19/complications , Critical Illness , Humans , Lung/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Respiration, Artificial , Tumor Necrosis Factor-alpha
3.
Alzheimer's & Dementia ; 17(S5):e057841, 2021.
Article in English | Wiley | ID: covidwho-1589190

ABSTRACT

Background COVID-19 is a respiratory disease where neurological sequelae are frequently reported. Neurofilament light (NfL) in plasma is a validated biomarker for neuronal damage. We assessed the trajectory of NfL levels in intensive care unit (ICU) patients diagnosed with COVID-19, and studied its relationship to clinical outcomes and markers of hypothesized pathophysiological mechanisms. Method As part of the Art-Deco study and Amsterdam UMC COVID-biobank, longitudinal samples and clinical data were collected weekly from a cohort of 31 prospectively admitted ICU patients with a minimum of 7 days of ventilation. The mean±sd age was 63±11 years. Admission duration ranged from 14-35 days and 156 samples were collected. We evaluated the NfL trajectory over time, and whether this trajectory differed by 90-day mortality outcome. Due to the non-linear trajectory of NfL, we applied linear mixed models including cubic splines for the time variable. Secondly, we tested whether baseline or peak NfL levels predicted mortality (n=7/31), delirium incidence after detubation (n=18/22), and duration of delirium (6±6 days). Third, we assessed if disease severity (day 7 Sequential Organ Failure Assessment [SOFA] score) and baseline hypoxemia (pAO2 before intubation), inflammation (IL1-b, IL-6, IL-8, TNF-α), and coagulopathy (d-dimer, presence of pulmonary embolism) were predictive of the NfL trajectory. For the latter models, we included an interaction term for the pathophysiological markers in the linear mixed models. All models were adjusted for age. Result NfL increased during ICU admission (p<001), and persisted longer in the non-survivors (p<0.05;Figure 1). Baseline or maximum NfL was not predictive of mortality or delirium incidence. However, maximum NfL correlated to the duration of delirium (r=0.5;p=0.02). From the pathophysiological markers, SOFA scores (p<0.05) and baseline TNF-α (p<0.05) were related to a stronger increase of NfL over time. Conclusion NfL levels increased over time and plateaued after 2-3 weeks in most COVID-19 patients at the ICU. Peak levels of NfL were predictive of delirium persistence. Repeated NfL levels may provide a future method for monitoring neurological outcomes in sedated ICU patients. Disease severity and specific inflammatory components appear important predictors of the NfL trajectory reflecting axonal damage in severe COVID-19 patients.

4.
Front Immunol ; 12: 664209, 2021.
Article in English | MEDLINE | ID: covidwho-1247863

ABSTRACT

Rationale: Systemic activation of procoagulant and inflammatory mechanisms has been implicated in the pathogenesis of COVID-19. Knowledge of activation of these host response pathways in the lung compartment of COVID-19 patients is limited. Objectives: To evaluate local and systemic activation of coagulation and interconnected inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory distress syndrome. Methods: Paired bronchoalveolar lavage fluid and plasma samples were obtained from 17 patients with COVID-19 related persistent acute respiratory distress syndrome (mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five functional domains (coagulation, complement system, cytokines, chemokines and growth factors) were measured. Measurements and Main Results: In all patients, all functional domains were activated, especially in the bronchoalveolar compartment, with significantly increased levels of D-dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I, soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors. In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after start mechanical ventilation many bronchoalveolar and plasma host response biomarkers had declined. Conclusions: Critically ill, ventilated patients with COVID-19 show strong responses relating to coagulation, the complement system, cytokines, chemokines and growth factors in the bronchoalveolar compartment. These results suggest a local pulmonary rather than a systemic procoagulant and inflammatory "storm" in severe COVID-19.


Subject(s)
COVID-19/immunology , Critical Illness , Lung/metabolism , Respiratory Distress Syndrome/immunology , SARS-CoV-2/physiology , Thromboplastin/metabolism , Aged , Blood Coagulation , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Follow-Up Studies , Humans , Immunity, Innate , Lung/pathology , Male , Middle Aged , Respiration, Artificial
5.
Thorax ; 76(10): 1010-1019, 2021 10.
Article in English | MEDLINE | ID: covidwho-1180971

ABSTRACT

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Subject(s)
COVID-19/immunology , Immunity, Cellular/physiology , Inflammation Mediators/metabolism , Aged , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , COVID-19/blood , COVID-19/pathology , Critical Care , Critical Illness , Female , Flow Cytometry , Humans , Macrophages/physiology , Male , Middle Aged , T-Lymphocytes/physiology
6.
Eur J Immunol ; 51(6): 1535-1538, 2021 06.
Article in English | MEDLINE | ID: covidwho-1151896

ABSTRACT

Despite high levels of CXCR3 ligands in mechanically ventilated COVID-19 patients, BALF CD8 T cells were not enriched in CXCR3+ cells but rather CCR6+ , likely due to high CCL20 levels in BALF, and had very high PD-1 expression. In mechanically ventilated, but not ward, patients Th-1 immunity is impaired. ​.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Chemokine CCL20/immunology , Lung/immunology , Receptors, CCR6/immunology , Respiration, Artificial , SARS-CoV-2/immunology , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/pathology , COVID-19/pathology , COVID-19/therapy , Female , Humans , Lung/pathology , Lymphocyte Count , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL